Xamarin.Tip – iOS Material Design Navigation Bar

To keep the Material Design coming to iOS, let’s look at making our NavigationBar more material.

Here’s what a “standard” UINavigationBar looks like on iOS:

Screen Shot 2017-05-16 at 12.25.17 PM

And here is what a Material Design Toolbar looks like on Android:
layout_structure_appbar_structure4

The goal here is to get something more similar to the Android Material Design look. The most notable differences are the drop shadow created by the toolbar onto the rest of the view as well as the distinct back button and other icons.

So, if you’re using Xamarin.Forms, you’ll need to create a custom renderer to get this job done. Let’s take a look at that:

MaterialNavigationRenderer.cs


[assembly: ExportRenderer(typeof(NavigationPage), typeof(MaterialNavigationRenderer))]
namespace YOUR_IOS_NAMESPACE
{
    ///
<summary>
    /// Custom renderer creating a material design navigation bar
    /// </summary>

    public class MaterialNavigationRenderer : NavigationRenderer
    {
        protected override void OnElementChanged(VisualElementChangedEventArgs e)
        {
            base.OnElementChanged(e);

            // Create the material drop shadow
            NavigationBar.Layer.ShadowColor = UIColor.Black.CGColor;
            NavigationBar.Layer.ShadowOffset = new CGSize(0, 0);
            NavigationBar.Layer.ShadowRadius = 3;
            NavigationBar.Layer.ShadowOpacity = 1;

            // Create the back arrow icon image
            var arrowImage = UIImage.FromBundle("Icons/ic_arrow_back_white.png");
            NavigationBar.BackIndicatorImage = arrowImage;
            NavigationBar.BackIndicatorTransitionMaskImage = arrowImage;

            // Set the back button title to empty since Material Design doesn't use it.
            if (NavigationItem?.BackBarButtonItem != null)
                NavigationItem.BackBarButtonItem.Title = " ";
            if (NavigationBar.BackItem != null)
            {
                NavigationBar.BackItem.Title = " ";
                NavigationBar.BackItem.BackBarButtonItem.Image = arrowImage;
            }
        }
    }
}

This will override our Renderer for all of our instances of a NavigationPage. To breakdown what is being done here, the renderer is initializing the native UINavigationBar, then updating the Layer of the UINavigationBar to create a drop shadow. After that, we instantiate the back arrow icon to replace the default iOS one. Lastly, we set the back button title to empty so that it doesn’t show up next to our new back button image.

The back button icon is taken from the official Material Design Icons from Google found here: https://material.io/icons/

The last thing we need to do is update our toolbar icon to fit the Material standards (thicker and bolder). To do this, we go back to the icons linked above and download the new check icon we want and substitute the ToolbarItem we have in our XAML.

Now we can see the results of our custom renderer and updated icon with our more Material Design looking toolbar:

Screen Shot 2017-05-16 at 12.31.37 PM

 

Next Steps

Want to take it further? Try updating your custom renderer to move the Title text alignment to the left and use the Roboto font! Check out this blog post on how to bring Roboto to your iOS fonts: https://alexdunn.org/2017/05/03/xamarin-tips-bringing-material-design-fonts-to-ios/.

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Advertisements

Xamarin.Tip – Binding a Picker to an Enum

So a recent Xamarin.Forms update released the new Bindable Picker, which allows you to bind an IList of objects to the picker (which will be ToString()‘ed). However, I’ve often find myself needing to create a form for a model that has enum properties. Previously, in order to do this, I would have to create a custom List or string from my enum and map it manually, then read from the SelectedItem bound to another string property, then when I need the actual value I’d have to map it back to the enum it “represents”.

It might have looked something like this:

MyViewModel.cs

...
private DogBreed _breedEnum; // this is our enum of: BorderCollie, LabradorRetriever, PitBull, etc.

public List<string> BreedNames
{
    get
    {
        return new List<string> { "Border Collie", "Labrador Retriever", "Pit Bull" };
    }
}

private string _selectedBreed;
public string SelectedBreed
{
    get
    {
        return _selectedBreed;
    }
    set
    {
        Set(ref _selectedBreed, value); // this is using MvvmLight
    }
}

public void DoSomethingWithTheBreed()
{
    switch(SelectedBreed)
    {
        case "Border Collie": _breedEnum = DogBreed.BorderCollie;
            break;
        case "Labrador Retriever": _breedEnum = DogBreed.LabradorRetriever;
            break;
        case "Pit Bull": _breedEnum = DogBreed.PitBull;
            break;
        //...
    }

    DoSomething(_breedEnum);
}
...

And our XAML

<Picker ItemsSource="{Binding BreedNames}" SelectedItem="{Binding SelectedBreed}"/>

As you can see, this is pretty gross…

Here’s a quick little strategy I use to make the binding process a little easier with my enums. It’s broken into just 3 quick parts:

  1. Create a extension methods to get a readable string from our `enum`
  2. Create a `Converter` to convert the `SelectedIndex` to the `enum` field
  3. Wire up the fields and XAML

Let’s create our enum extension methods to get a readable string for the UI:
StringExtensions.cs

    public static class StringExtensions
    {
        public static string SplitCamelCase(this string str)
        {
            return Regex.Replace(
                Regex.Replace(
                    str,
                    @"(\P{Ll})(\P{Ll}\p{Ll})",
                    "$1 $2"
                ),
                @"(\p{Ll})(\P{Ll})",
                "$1 $2"
            );
        }
    }

This SplitCamelCase method will take a string that is camel cased and split it out into separate words such as `”ThisIsMyValue”.SplitCamelCase(); // “This Is My Value”

Now that we have the ability to get a readable string from the enum values, let’s create our ViewModel properties we will need.

MyViewModel.cs

...
private DogBreed _selectedBreed;
public DogBreed SelectedBreed
{
    get
    {
        return _selectedBreed;
    }
    set
    {
        Set(ref _selectedBreed, value);
    }
}

public List<string> BreedNames
{
    get
    {
        return Enum.GetNames(typeof(DogBreed)).Select(b => b.SplitCamelCase()).ToList();
    }
}

public void DoSomethingWithBreed()
{
    DoSomething(SelectedBreed);
}
...

So much cleaner already. Now we need to create a Converter that our XAML can use to actually set the SelectedBreed property of our ViewModel.

IntEnumConverter.cs

    public class IntEnumConverter : IValueConverter
    {
        public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
        {
            if (value is Enum)
            {
                return (int)value;
            }
            return 0;
        }

        public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
        {
            if(value is int)
            {
                return Enum.ToObject(targetType, value);
            }
            return 0;
        }
    }

Last thing to do is use our IntEnumConverter and our properties to create our view in XAML:

MyView.xaml

<ContentPage.Resources>
    <ResourceDictionary>
        <converters:IntEnumConverter x:Key="IntEnum"/>
    </ResourceDictionary>
</ContentPage.Resources>
<Picker ItemsSource="{Binding BreedNames}" SelectedIndex="{Binding SelectedBreed, Converter=IntEnum}"/>

Here’s what we have!

Now you have the means to bind any of your Pickers quite easily to any of your custom enum fields!

“Woah! How did you get that Material Design Looking Picker on iOS”… Stay tuned!

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Tips – Bringing Material Design Fonts to iOS

We might as well continue this trend of bringing Material Design to our iOS apps. Be sure to check out my previous posts on Material Frames in Xamarin.Forms iOS and Material Design Buttons in iOS (Native and Xamarin.Forms). Let’s talk about fonts now.

Material Design states that the preferred fonts to use are Roboto and Noto: https://material.io/guidelines/style/typography.html. These fonts ship in Android natively from Android 5.0+ (API Level 2.1) or when using the Android App Compat packages. However, these are not part of the OS in iOS, so if we want to fit a more Material Design standard, we need to bring those into our own apps.

Downloading and Installing the Fonts

First things first, we need to download both of these fonts from Google’s open web fonts.

  1. Roboto: https://fonts.google.com/specimen/Roboto
  2. Noto: https://fonts.google.com/specimen/Noto+Sans

You’ll need to make sure you don’t just download the Regular font files for both of these, but also each of the weights you’ll want to use in your app.

Now that you have all your .ttf files, you’ll need to bring them into your project. Place them in a folder at iOS Project > Resources > Font. Also make sure that each of their BuildActions are set to BundleResources. Do this by going to the Properties of each file and use the Build Action dropdown.
RobotoFontsInVS.PNG

The last step in getting them property installed is to update your Info.plist file to include the fonts. After this step, we’ll be able to start using it.

In Visual Studio, open your Info.plist file with the Generic PList Editor. When you do that, it should look something like this:
infoplistdefault

Scroll down to the bottom and add a new Property. You can use the dropdown to find it, or type it out yourself, but it needs to be Fonts provided by application. Set the type of this new item to Array, then start adding subitems for each of the fonts. For each font, you will need to set the type to String and the value to the path to your font from the Resources folder. So in our case, that will be something like Fonts/Roboto-Black.ttf.

Do this for each of your font files, and it should looks something like this:

infoplistfonts

Now we have our fonts installed into our iOS application, we can start using them!

Using the Font in Xamarin.iOS Native

Now that our application is aware of our font, we can apply it to any UILabel we instantiate in our code:

ExampleViewController.cs

var label = new UILabel(new RectangleF(0,0, width, height /2));
label .Text = "This is a label using Roboto";
label .Font = UIFont.FromName("Roboto-Regular", 20f);
this.Add(label);

Alternatively, we can use the Appearance APIs to apply it to all of our UILabels across our app:

AppDelegate.cs

public class AppDelegate : UIApplicationDelegate
{
    public override bool FinishedLaunching(UIApplication app, NSDictionary options)
    {
        ...

        UILabel.Appearance.Font = UIFont.FromName("Roboto-Regular", 20f);
        ...
        return true;
    }
}

Using the Font in Xamarin.Forms iOS

Of course, we also might need to use this font in Xamarin.Forms! Just like in native iOS, we need to apply our font, by name to any given label we want, or we can use Styles to apply it everywhere.

ExamplePage.xaml

<ContentPage ...>
    <Label FontFamily="Roboto-Regular" FontSize="20" Text="Xamarin.Forms Roboto on iOS"/>
</ContentPage>

or:

App.xaml

<Application ...>
    <Application.Resources>
        <ResourceDictionary>
<Style TargetType="Label">
                <Setter Property="FontFamily" Value="Roboto-Regular"/>
                ...
            </Style>

        </ResourceDictionary>
    </Application.Resources>
</Application>

Results

Now we have our nicer looking fonts from Material Design applied to our iOS apps. Look at this comparison of some default iOS Frames and Fonts versus our new Materialized look and feel:

Old (Defaults)
iOSDefaultFrameAndLabel

New (Custom Frame and Roboto-Regular Font)
iOSMaterialFrameAndLabel

Are there any other controls you’d like to see Materialized on iOS? Let me know in the comments!

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Tips – Creating a Material Design Button in iOS

As per requests after my last post on creating a more Material looking Xamarin.Forms Frame on iOS, I’ll start talking about bringing a more material design feel to other controls in iOS. This time we’ll look at getting a more material Button control, first to be usable without Xamarin.Forms, then in a custom renderer that we can use everywhere and apply to all our Buttons.

Keep in mind, this does not hit upon all the pieces of a Material Design Button that you might see in Android. For example, it does not show a ripple on tap, and does not raise the elevation on tap. Those topics will come in a different blog post!

Let’s get down to it with a custom UIButton that applies a material-ish shadow to our button.

MaterialButton.cs

    public class MaterialButton : UIButton
    {
        public override void Draw(CGRect rect)
        {
            base.Draw(rect);

            // don't do it on transparent bg buttons
            if (BackgroundColor.CGColor.Alpha == 0)
                return;

            // Update shadow to match better material design standards of elevation
            Layer.ShadowRadius = 2.0f;
            Layer.ShadowColor = UIColor.Gray.CGColor;
            Layer.ShadowOffset = new CGSize(2, 2);
            Layer.ShadowOpacity = 0.80f;
            Layer.ShadowPath = UIBezierPath.FromRect(Layer.Bounds).CGPath;
            Layer.MasksToBounds = false;
        }
    }

You can see that we basically just apply a specific shadow to our base Layer of the control.

Now, let’s interpret this into a custom renderer for Xamarin.Forms:

MaterialButtonRenderer.cs

[assembly: ExportRenderer(typeof(Button), typeof(MaterialButtonRenderer))]
namespace YOUR_IOS_NAMESPACE
{
    public class MaterialButtonRenderer : ButtonRenderer
    {
        public override void Draw(CGRect rect)
        {
            base.Draw(rect);

            // don't do it on transparent bg buttons
            if (Element.BackgroundColor.A == 0)
                return;

            // Update shadow to match better material design standards of elevation
            Layer.ShadowRadius = 2.0f;
            Layer.ShadowColor = UIColor.Gray.CGColor;
            Layer.ShadowOffset = new CGSize(2, 2);
            Layer.ShadowOpacity = 0.80f;
            Layer.ShadowPath = UIBezierPath.FromRect(Layer.Bounds).CGPath;
            Layer.MasksToBounds = false;

        }
    }
}

This will apply the shadow to any regular Button Element. If you want to create a whole new Element that will allow you to use it in specific places, you could either create an Effect, or you can create a new class that subclasses Xamarin.Forms.Button, and then update the renderer to fit that class:

MaterialButton.xaml.cs

public partial class MaterialButton : Button
{
    // we don't need to do anything special here since we do all the custom work in the iOS Renderer
}

and of course our updated renderer

MaterialButtonRenderer.cs

[assembly: ExportRenderer(typeof(MaterialButton), typeof(MaterialButtonRenderer))]
namespace YOUR_IOS_NAMESPACE
{
    public class MaterialButtonRenderer : ButtonRenderer
    {
        public override void Draw(CGRect rect)
        {
            base.Draw(rect);

            // don't do it on transparent bg buttons
            if (Element.BackgroundColor.A == 0)
                return;

            // Update shadow to match better material design standards of elevation
            Layer.ShadowRadius = 2.0f;
            Layer.ShadowColor = UIColor.Gray.CGColor;
            Layer.ShadowOffset = new CGSize(2, 2);
            Layer.ShadowOpacity = 0.80f;
            Layer.ShadowPath = UIBezierPath.FromRect(Layer.Bounds).CGPath;
            Layer.MasksToBounds = false;

        }
    }
}

Now your control should go from this:

iOSRegularButton

To this:

iOSMaterialButton

Make sure to stay tuned for more Material Design styled controls brought to iOS, and adding some advanced features like rippled clicks and elevation changes/settings.

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Tips – Making Your iOS Frame Shadows More Material

If you’ve used the Xamarin.Forms Frame element on iOS and have HasShadow set to true, then you might notice that on iOS, the shadow is quite abrasive and overwhelming.

We can update just the iOS FrameRenderer to create some better shadows, so we can go from this:

DefaultiOSFrameShadow

to this:

iOSMaterialShadow

In order to override all Frame elements, we will need to create our custom renderer and also set it to export to the default Frame. If you do not want it to apply to all Frames, then you can create a custom control that inherits from frame and then apply the renderer to that new element type. We’ll example both here:

MaterialFrameRenderer.cs


[assembly: ExportRenderer(typeof(Frame), typeof(MaterialFrameRenderer))]
namespace YOU_IOS_NAMESPACE
{
    /// <summary>
    /// Renderer to update all frames with better shadows matching material design standards
    /// </summary>

    public class MaterialFrameRenderer : FrameRenderer
    {
        public override void Draw(CGRect rect)
        {
            base.Draw(rect);

            // Update shadow to match better material design standards of elevation
            Layer.ShadowRadius = 2.0f;
            Layer.ShadowColor = UIColor.Gray.CGColor;
            Layer.ShadowOffset = new CGSize(2, 2);
            Layer.ShadowOpacity = 0.80f;
            Layer.ShadowPath = UIBezierPath.FromRect(Layer.Bounds).CGPath;
            Layer.MasksToBounds = false;
        }
    }
}

That’s all you need in your iOS project in order to apply it everywhere. Now, if you want to apply it to a new custom Element, we can create it and apply it like so:

MaterialFrame.xaml.cs


namespace YOUR_PCL_NAMESPACE
{
    public class MaterialFrame : Frame
    {
        // no other code needs to go here unless you want more customizable properties.
    }
}

Then create your renderer and export it for you new Element:

MaterialFrameRenderer.cs


[assembly: ExportRenderer(typeof(MaterialFrame), typeof(MaterialFrameRenderer))]
namespace YOU_IOS_NAMESPACE
{
    /// <summary>
    /// Renderer to update all frames with better shadows matching material design standards
    /// </summary>

    public class MaterialFrameRenderer : FrameRenderer
    {
        public override void Draw(CGRect rect)
        {
            base.Draw(rect);

            // Update shadow to match better material design standards of elevation
            Layer.ShadowRadius = 2.0f;
            Layer.ShadowColor = UIColor.Gray.CGColor;
            Layer.ShadowOffset = new CGSize(2, 2);
            Layer.ShadowOpacity = 0.80f;
            Layer.ShadowPath = UIBezierPath.FromRect(Layer.Bounds).CGPath;
            Layer.MasksToBounds = false;
        }
    }
}

And now your frames can look much nicer~

iOSMaterialShadow

 

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Controls – Xamarin.Forms FloatingActionButton (including iOS!)

You did actually read that title correctly – we have a FloatingActionButton to use in Xamarin.Forms that works in both Android and iOS!

I’ve put the source code up for this here: https://github.com/SuavePirate/Xamarin.Forms.Controls.FloatingActionButton

It’s rudimentary and has room for some more fun properties, but it is fully functional! If you would like to contribute to the repository, see the TODO: list at the bottom of the README and start forking and making pull requests!

To breakdown the steps to create your own Floating Action Button in Xamarin.Forms, you’ll need:

  1. A custom Xamarin.Forms `Element`
  2. An Android Custom renderer to use the native `Android.Compat.Design.Widgets.FloatingActionButton`
  3. An iOS Custom renderer to create a button that looks like a FAB.

So let’s go in that order.

In Xamarin.Forms PCL

FloatingActionButton.xaml.cs

  public partial class FloatingActionButton : Button
    {
        public static BindableProperty ButtonColorProperty = BindableProperty.Create(nameof(ButtonColor), typeof(Color), typeof(FloatingActionButton), Color.Accent);
        public Color ButtonColor
        {
            get
            {
                return (Color)GetValue(ButtonColorProperty);
            }
            set
            {
                SetValue(ButtonColorProperty, value);
            }
        }
        public FloatingActionButton()
        {
            InitializeComponent();
        }
    }

We added a new BindableProperty for the ButtonColor. This is done because setting the BackgroundColor will mess up the Android renderer and apply the background behind the FAB. We want to inherit from Button so that we can utilize some of the already useful properties that come with it – namely the Image property that consumes a FileImageSource. We can use this to set the icon for our FAB.

In Android

FloatingActionButtonRenderer.cs

using FAB = Android.Support.Design.Widget.FloatingActionButton;

[assembly: ExportRenderer(typeof(SuaveControls.Views.FloatingActionButton), typeof(FloatingActionButtonRenderer))]
namespace SuaveControls.FloatingActionButton.Droid.Renderers
{
    public class FloatingActionButtonRenderer : Xamarin.Forms.Platform.Android.AppCompat.ViewRenderer<SuaveControls.Views.FloatingActionButton, FAB>
    {
        protected override void OnElementChanged(ElementChangedEventArgs<SuaveControls.Views.FloatingActionButton> e)
        {
            base.OnElementChanged(e);

            if (e.NewElement == null)
                return;

            var fab = new FAB(Context);
            // set the bg
            fab.BackgroundTintList = ColorStateList.ValueOf(Element.ButtonColor.ToAndroid());

            // set the icon
            var elementImage = Element.Image;
            var imageFile = elementImage?.File;

            if (imageFile != null)
            {
                fab.SetImageDrawable(Context.Resources.GetDrawable(imageFile));
            }
            fab.Click += Fab_Click;
            SetNativeControl(fab);

        }
        protected override void OnLayout(bool changed, int l, int t, int r, int b)
        {
            base.OnLayout(changed, l, t, r, b);
            Control.BringToFront();
        }

        protected override void OnElementPropertyChanged(object sender, PropertyChangedEventArgs e)
        {
            var fab = (FAB)Control;
            if (e.PropertyName == nameof(Element.ButtonColor))
            {
                fab.BackgroundTintList = ColorStateList.ValueOf(Element.ButtonColor.ToAndroid());
            }
            if (e.PropertyName == nameof(Element.Image))
            {
                var elementImage = Element.Image;
                var imageFile = elementImage?.File;

                if (imageFile != null)
                {
                    fab.SetImageDrawable(Context.Resources.GetDrawable(imageFile));
                }
            }
            base.OnElementPropertyChanged(sender, e);

        }

        private void Fab_Click(object sender, EventArgs e)
        {
            // proxy the click to the element
            ((IButtonController)Element).SendClicked();
        }
    }
}

A few important things to point out:

  • We add the additional using statement `using FAB = Android.Support.Design.Widget.FloatingActionButton;` to help us distinguish between our Xamarin.Forms element and the built in Android control.
  • We are NOT using a `ButtonRenderer` as our base class, but instead using a basic `ViewRenderer`. This is because the underlying control will not be a native Android `Button`, but the native Android `FloatingActionButton`.
  • Because we replace the `ButtonRenderer`, we need to make sure we still propagate click events up to the Xamarin.Forms element.

Now let’s look at iOS, which can utilize more of the built in pieces from Xamarin.Forms since it supports the BorderRadius property on Buttons.

In iOS

FloatingActionButtonRenderer.cs

[assembly: ExportRenderer(typeof(SuaveControls.Views.FloatingActionButton), typeof(FloatingActionButtonRenderer))]
namespace SuaveControls.FloatingActionButton.iOS.Renderers
{
    [Preserve]
    public class FloatingActionButtonRenderer : ButtonRenderer
    {
        public static void InitRenderer()
        {
        }
        public FloatingActionButtonRenderer()
        {
        }
        protected override void OnElementChanged(ElementChangedEventArgs<Button> e)
        {
            base.OnElementChanged(e);

            if (e.NewElement == null)
                return;

            // remove text from button and set the width/height/radius
            Element.WidthRequest = 50;
            Element.HeightRequest = 50;
            Element.BorderRadius = 25;
            Element.BorderWidth = 0;
            Element.Text = null;

            // set background
            Control.BackgroundColor = ((SuaveControls.Views.FloatingActionButton)Element).ButtonColor.ToUIColor();
        }
        public override void Draw(CGRect rect)
        {
            base.Draw(rect);
            // add shadow
            Layer.ShadowRadius = 2.0f;
            Layer.ShadowColor = UIColor.Black.CGColor;
            Layer.ShadowOffset = new CGSize(1, 1);
            Layer.ShadowOpacity = 0.80f;
            Layer.ShadowPath = UIBezierPath.FromOval(Layer.Bounds).CGPath;
            Layer.MasksToBounds = false;

        }
        protected override void OnElementPropertyChanged(object sender, PropertyChangedEventArgs e)
        {
            base.OnElementPropertyChanged(sender, e);

            if (e.PropertyName == "ButtonColor")
            {
                Control.BackgroundColor = ((SuaveControls.Views.FloatingActionButton)Element).ButtonColor.ToUIColor();
            }
        }
    }
}

We set an explicit WidthRequest, HeightRequest, and BorderRadius to get ourselves a circle. I’m not a big fan of doing it here, since it’s better suited as a calculation, but for now it works.

Lastly in our Draw override, we set up the drop shadow behind out button, and make sure that our ShadowPath is actually built from an oval so that it rounds off with the Button.
Also note that we take the ButtonColor property and apply it as the BackgroundColor of the UIButton to override the color from Xamarin.Forms. Don’t forget to set Text to null so that we can’t add text to the button and mess it up.

As a side note, iOS might try to link our your custom renderer if you are using it in an iOS Class Library. In order to avoid this, make sure to call a static InitRenderer method in your AppDelegate.cs as it will prevent it from being linked out.

Using the FloatingActionButton

Now that we have our renderers registered for our new Element, we can use it in our XAML or C# of our PCL or Shared Project:

MainPage.xaml

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"              xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"              xmlns:local="clr-namespace:SuaveControls.FabExample"              xmlns:controls="clr-namespace:SuaveControls.Views;assembly=SuaveControls.FloatingActionButton"              x:Class="SuaveControls.FabExample.MainPage">
    <StackLayout Margin="32">
        <Label Text="This is a Floating Action Button!"             VerticalOptions="Center"             HorizontalOptions="Center"/>

        <controls:FloatingActionButton x:Name="FAB" HorizontalOptions="CenterAndExpand" WidthRequest="50" HeightRequest="50"  VerticalOptions="CenterAndExpand" Image="ic_add_white.png" ButtonColor="#03A9F4" Clicked="Button_Clicked"/>
    </StackLayout>
</ContentPage>

and our code behind:

MainPage.xaml.cs

namespace SuaveControls.FabExample
{
    public partial class MainPage : ContentPage
    {
        public MainPage()
        {
            InitializeComponent();

        }

        private async void Button_Clicked(object sender, EventArgs e)
        {
            await DisplayAlert("FAB Clicked!", "Congrats on creating your FAB!", "Thanks!");
        }
    }
}

Then we get these results in our Android and iOS apps:

Android

Screenshot_1493173400

iOS

2017-04-25_10-38-38-PM

If you want to just pull down the control I built on GitHub, the steps are straight forward:

  1. Clone the repository
  2. Reference the PCL in your PCL/Shared Lib
  3. Reference the PCL and native projects in your respective native project
  4. Pull the namespace into your XAML (or C#)
  5. Start using it!

The repository also contains an example app that references the source libraries.

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Tips – MVVM Light Set Expressions Explained

I recently published a post about creating some Visual Studio code snippets for shorcutting the overhead of writing bindable properties and commands with MvvmLight. Xamarin.Tips – Visual Studio Code Templates/Snippets for MVVM Light

This post sparked some people who may or may not have used  Mvvm Light in the past to ask me about how it works underneath, and specifically the Set call made. For example:

private string _myText;

public string MyText
{
    get
    {
        return _myText;
    }
    set
    {
        // This is where the questions are.
        Set(() => MyText, ref _myText, value);
    }
}

I figured I would make another post to dissect this and explain what it is and how it is used!


First off, why are we doing this at all? What does this really do for us?

We use MvvmLight in order to create two-way or one-way bindings to our views whether that is in WPF, UWP, or Xamarin.Forms. The way these bindings are handled is by implementing INotifyPropertyChanged. When we implement INotifyPropertyChanged, we create a public event called PropertyChanged. PropertyChanged takes a custom EventArgs that includes the name of the property that was changed as a string. You would invoke that like this:

PropertyChanged?.Invoke(new PropertyChangedEventArgs("MyText"));

We can then have an event handler attached to this:

myViewModel.PropertyChanged += (sender, args) =>
{
    Console.WriteLine(args.PropertyName); // "MyText"
};

However, platforms such as WPF, UWP, and Xamarin give us the ability to use XAML to create these bindings like this (in Xamarin.Forms):

<Label Text="{Binding MyText}"/>

Setting bindings like this creates event handlers in the background if the BindingContext (or DataContext if you’re in UWP/WPF) implements INotifyPropertyChanged.

So now we can create auto-updating views with our bindings and calling PropertyChanged, but that’s a pain to do for every single property. That’s where libraries like MvvmLight come into play. They help handle a lot of the manual calls and ugly code. So now let’s look at what MvvmLight is really doing under the covers.

First, we need to look at the ViewModelBase class that MvvmLight ships and that contains the Set method we are talking about. ViewModelBase inherits from ObservableObject (another class MvvmLight), and ObservableObject is what is implementing INotifyPropertyChanged! We found it!

So how are ViewModelBase.Set and ObservableObject.Set making their way to calling PropertyChanged?

Let’s dissect the three parameters for the Set method used in the templates I created:

Set(() => MyText, ref _myText, value);
  1. The first is of type Expression<Func>. It is an expression that is returning the property that is calling it? This is where the fun stuff is really happening, so more on that later.
  2. The second is the underlying field that needs to be updated, passed in as a reference type rather than by value.
  3. The third is the new value that it is being set to.

The last two seem to make sense right away: what field are we updating, and what is the value we are setting it to? We need to pass the field in as a ref so that when we update it, it updates in the original model that passed it in rather than simply passing the value of the field into the method.

So what is that Expression?

The only thing left in order to call PropertyChanged is the name of the property being updated, so that must be what the property expression is for. Without decompiling the MvvmLight dlls and looking at the source code, we can infer how we might be able to pull the property name out of that Expression.

First, we need to get the Body of the Expression as a System.Linq.Expression.MemberExpression. The MemberExpression has a Member property which we can then pull property info from. We can cast that Member as a System.Reflection.PropertyInfo, and with that PropertyInfo, we can take the name of the property.

Expression<Func<string>> myTextExpression = () => MyText;
var body = myTextExpression.Body as MemberExpression;
var member = body.Member as PropertyInfo;
var finalPropertyName = member.Name; // we have it!

Then the final step is to finally invoke PropertyChanged with that property name.

I do also want to point out that although I use this particular Set method from MvvmLight, the ObservableObject and ViewModelBase do come with multiple overloads of Set that might work better for your preferred practices. For example, you can call Set without the property expression, and just pass the name of the property in directly. For example:

private string _myText;

public string MyText
{
    get
    {
        return _myText;
    }
    set
    {
        Set("MyText", ref _myText, value); 
    }
}

OR to be even more optimized, you can use nameof to get the name of the property without having to have string-literals floating around in your code:

private string _myText;

public string MyText
{
    get
    {
        return _myText;
    }
    set
    {
        Set(nameof(MyText), ref _myText, value); 
    }
}

Here are all the overloads available to use:

ViewModelBase.cs

protected bool Set<T>(Expression<Func<T>> propertyExpression, ref T field, T newValue, bool broadcast);
protected bool Set<T>(string propertyName, ref T field, T newValue = default(T), bool broadcast = false);
protected bool Set<T>(ref T field, T newValue = default(T), bool broadcast = false, [CallerMemberName] string propertyName = null);

ObservableObject.cs

// THIS IS THE ONE WE WERE USING
protected bool Set<T>(Expression<Func<T>> propertyExpression, ref T field, T newValue);
protected bool Set<T>(string propertyName, ref T field, T newValue);
protected bool Set<T>(ref T field, T newValue, [CallerMemberName] string propertyName = null);

If you happen to have any other questions about how this works, or about breaking down Expressions like we did, feel free to drop a comment on this post, or mention me on Twitter @Suave_Pirate.



And as always:



If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring your developer content? Message me on twitter @Suave_Pirate for details.