Alexa.Tip – Build Unit Tested Skills in .NET

In this Alexa.Tip series, we explore some little bits of code that can make your life easier in developing Alexa Skills in many languages including C# + .NET, node.jS + TypeScript, Kotlin, etc. We look at concepts, design patterns, and implementations that developers might not be aware of, and how they can be applied to voice application development, best practices, and more!

In this post, we explore some more best practices in developing Alexa Skills in C# whether you are using an ASP.NET Core API or an AWS Lambda. This post will expand our previous posts about building better abstractions for handling Alexa responses and demonstrate how we can now properly Unit test these handlers as well as any other separated bits of logic that the Handler implementations consume.

Check out all the raw source code for this post, and more here: https://github.com/SuavePirate/Alexa.Tips.Net

Prerequisite

If you haven’t read up on how to use the Handler Registration Pattern, take a look at my earlier post here: Alexa.Tip – Using Handler Registration Pattern in .NET

The short version is that we use this pattern of registering IHandler implementations to handle different types of requests that our skill receives, regardless of whether we are using AWS Lambdas or ASP.NET Core APIs.

Unit Testing Handlers

Since we now have nice atomized units (Handlers) built for each of our RequestTypes and Intents, they are SCREAMING to be unit tested. So, we can easily test them against different scenarios given our positive and negative cases.

Take for example, the SimpleLaunchHandler that is responsible only for LaunchRequest, and whose HandleAsync() implementation returns a static response. The two main cases we want to test against is the HandleAsync() returning properly for a proper LaunchRequest, and that the CanHandle() implementation returns false for non LaunchRequest skill requests.

In these samples, I’m using xUnit for my Unit tests, but the same concept is applicable with any other Unit testing framework (and really any other language).

In each case, we want to separate our 3 A’s of testing, “Arrange”, “Act”, and “Assert”. For these basic examples, the three steps are pretty clear.

  1. Arrange the Testable SkillRequest object
  2. Act on the subject’s method we are testing by sending it the SkillRequest
  3. Assert our final response

Let’s first test the CanHandle() against the postive case, meaning we want to send it data we want to be successful:

public class SimpleLaunchHandlerTests
{
    private readonly SimpleLaunchHandler _subject;
    public SimpleLaunchHandlerTests()
    {
        _subject = new SimpleLaunchHandler();
    }


    [Fact]
    public void SimpleHandler_CanHandleLaunchRequest()
    {
        // arrange
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new LaunchRequest
            {
                Type = "LaunchRequest"
            }
        };

        // act
        var canHandle = _subject.CanHandle(request);

        // assert
        Assert.True(canHandle);
    }

}

Now let’s perform the opposite by sending it a request of a different type:

 [Fact]
public void SimpleHandler_CanNotHandleIntentRequest()
{
    // arrange
    var request = new SkillRequest()
    {
        Version = "1.0",
        Request = new IntentRequest
        {
            Type = "IntentRequest"
        }
    };

    // act
    var canHandle = _subject.CanHandle(request);

    // assert
    Assert.False(canHandle);
}

Now, we can look at the positive example of passing the LaunchRequest into the HandleAsync method:

[Fact]
public async Task SimpleHandler_ReturnsResponse()
{
    // arrange
    var request = new SkillRequest()
    {
        Version = "1.0",
        Request = new LaunchRequest
        {
            Type = "LaunchRequest"
        }
    };

    // act
    var response = await _subject.HandleAsync(request);

    // assert
    Assert.NotNull((response.Response.OutputSpeech as PlainTextOutputSpeech)?.Text);
}

Now that we have our LaunchRequest tested, let’s take a look at a simple static IntentRequest set of tests:

DogFactHandlerTests.cs

public class DogFactHandlerTests : IClassFixture<DogFactHandler>
{
    private readonly DogFactHandler _subject = new DogFactHandler();


    [Fact]
    public async Task DogFactHandler_ReturnsResponse()
    {
        // arrange
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "DogFactIntent"
                }
            }
        };

        // act
        var response = await _subject.HandleAsync(request);

        // assert
        Assert.NotNull((response.Response.OutputSpeech as PlainTextOutputSpeech)?.Text);
    }

    [Fact]
    public void DogFactHandler_CanHandleIntentRequest()
    {
        // arrange
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "DogFactIntent"
                }
            }
        };
        // act
        var canHandle = _subject.CanHandle(request);

        // assert
        Assert.True(canHandle);
    }
    [Fact]
    public void DogFactHandler_CanNotHandleLaunchRequest()
    {
        // arrange
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new LaunchRequest
            {
                Type = "LaunchRequest"
            }
        };


        // act
        var canHandle = _subject.CanHandle(request);

        // assert
        Assert.False(canHandle);
    }
    [Fact]
    public void DogFactHandler_CanNotHandleOtherIntents()
    {
        // arrange
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "AMAZON.HelpIntent"
                }
            }
        };


        // act
        var canHandle = _subject.CanHandle(request);

        // assert
        Assert.False(canHandle);
    }
}

Okay, cool, but what about stuff that isn’t static? What if I’m getting my data from somewhere else and want to test those cases? Let’s bring Moq into the picture!

Let’s take this handler for example:

SampleFactHandler.cs

public class SampleFactHandler : GenericHandler, IHandler
{
    private readonly SampleMessageDbContext _context;
    public SampleFactHandler(SampleMessageDbContext context)
    {
        _context = context;
    }
    public override string IntentName => "SampleMessageIntent";

    public override Type RequestType => typeof(IntentRequest);

    public override async Task<SkillResponse> HandleAsync(SkillRequest request)
    {
        // just grab one as an example
        var message = await _context.SampleMessages.FirstOrDefaultAsync();
        return ResponseBuilder.Tell(message?.Content ?? "I don't have any messages for you.");
    }
}

So this Handler uses an Entity Framework Core DbContext with a table of SampleMessage objects to get the content. In this sample, we just grab the first one, but you could imagine some more complex data-logic to pull out the proper message.

To unit test this, we can pass in different “Mock” implementations of the SampleMessageDbContext. For this, I usually use Moq, but you can also pass in a full implementation that you’ve built yourself.

Here are some samples of testing this with different Moq’d contexts to test a few scenarios. Note: we still want to test against the CanHandle and HandleAsync as well, but now we have two different cases to test for such as if there are no messages in the db, and when there is one.

SampleFactHandlerTests.cs

public class SampleFactHandlerTests
{
    [Fact]
    public async Task SampleFactHandler_ReturnResponseWithData()
    {
        // arrange
        var context = new Mock<SampleMessageDbContext>();
        context.Setup(d => d.SampleMessages.FirstOrDefaultAsync(CancellationToken.None)).Returns(Task.FromResult(new SampleMessage
        {
            Id = Guid.NewGuid().ToString(),
            Content = "This is a mocked response message"
        }));
        var subject = new SampleFactHandler(context.Object);
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "SampleMessageIntent"
                }
            }
        };

        // act
        var response = await subject.HandleAsync(request);

        // assert
        Assert.NotNull((response.Response.OutputSpeech as PlainTextOutputSpeech)?.Text);
    }
    [Fact]
    public async Task SampleFactHandler_ReturnFallbackResponseWithNoData()
    {
        // arrange
        var context = new Mock<SampleMessageDbContext>();
        context.Setup(d => d.SampleMessages.FirstOrDefaultAsync(CancellationToken.None)).Returns(Task.FromResult<SampleMessage>(null));
        var subject = new SampleFactHandler(context.Object);
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "SampleMessageIntent"
                }
            }
        };

        // act
        var response = await subject.HandleAsync(request);

        // assert
        Assert.True((response.Response.OutputSpeech as PlainTextOutputSpeech)?.Text == "I don't have any messages for you.");
    }
}

We can also, and probably should also add some CanHandle and non-assinable Intent types to test, but for the sake of not making you read the same thing over and over again, these are the two that matters.

Unit Testing Controllers

Personally, I don’t typically unit test my Controllers, but that’s because I have some general rules in place to not change them one they are implemented. However, when working on a team, it may be easier and more sustainable to implement a few test on the controller to guarantee that changes made to it don’t affect the currently working implementation.

Some basic positive/negative test might look like this:

SimpleAlexaControllerTests.cs

public class SimpleAlexaControllerTests
{
    [Fact]
    public async Task AlexaController_ResponseWithHandler() 
    {
        // arrange
        var subject = new SimpleAlexaController(new List<IHandler>{ new DogFactHandler() });
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "DogFactIntent"
                }
            }
        };
        // act
        var response = _subject.HandleRequest(request);

        // assert
        Assert.NotNull((response.Response.OutputSpeech as PlainTextOutputSpeech)?.Text);
    }

    [Fact]
    public async Task AlexaController_ResponseWithoutHandler() 
    {
        // arrange
        var subject = new SimpleAlexaController(new List<IHandler>{ new SimpleLaunchHandler() }); // no DogFactHandler
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "DogFactIntent"
                }
            }
        };

        // act
        var response = _subject.HandleRequest(request);

        // assert
        Assert.Null(response);
    }
}

Unit Testing Lambda Functions

Just like testing the Controller, if you are using AWS Lambda rather than ASP.NET Core, you can create unit tests against your Function endpoint in order to get some coverage. That could look simple like something here:

FunctionHandlerTests.cs

public class FunctionHandlerTests
{

    [Fact]
    public async Task LambdaFunction_ResponseWithHandler() 
    {
        // arrange
        var subject = new SimpleAlexaHandler();
        subject.Handlers = new List<IHandler>{ new DogFactIntent() });
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "DogFactIntent"
                }
            }
        };
        // act
        var response = _subject.HandleRequest(request, null);

        // assert
        Assert.NotNull((response.Response.OutputSpeech as PlainTextOutputSpeech)?.Text);
    }

    [Fact]
    public async Task LambdaFunction_ResponseWithoutHandler() 
    {
        // arrange
        var subject = new SimpleAlexaHandler();
        subject.Handlers = new List<IHandler>{ new SimpleLaunchHandler() }); // no DogFactIntent handler
        var request = new SkillRequest()
        {
            Version = "1.0",
            Request = new IntentRequest
            {
                Type = "IntentRequest",
                Intent = new Intent
                {
                    Name = "DogFactIntent"
                }
            }
        };

        // act
        var response = _subject.HandleRequest(request);

        // assert
        Assert.Null(response);
    }

}

That’s all the unit test types for now! Anything else that needs testing would be tested outside the Alexa specific logic. But hey! Now we can write some strong and code-covered tested skills which leads to better skills overall

What’s next?

Check out more Alexa Developer Tips here: https://alexdunn.org/tag/alexa/


If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile and AI developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.


voicify_logo
I’m the Director and Principal Architect over at Voicify. Learn how you can use the Voice Experience Platform to bring your brand into the world of voice on Alexa, Google Assistant, Cortana, chat bots, and more: https://voicify.com/


Advertisements

Alexa.Tip – Using Entity Framework in Your C# Alexa Skill Lambda

In this Alexa.Tip series, we explore some little bits of code that can make your life easier in developing Alexa Skills in many languages including C# + .NET, node.jS + TypeScript, Kotlin, etc. We look at concepts that developers might not be aware of, design patterns that and how they can be applied to voice application development, best practices, and more!

In the previous Alexa.Tip, we explored Accessing Lambda Environment Variables in .NET in order to access a secure connection string and initialize a DbContext to use.

If you don’t know how to access Lambda Environment variables already, PLEASE read that post first as this post’s samples will NOT show the use of hard coded connection strings – let’s follow some best practices! 😀

Alright, let’s get into it. If you’re developing Alexa Skills in .NET, you probably need to access data somewhere! At least if you’re building a real-world scale voice application. Also, if you’re a .NET developer, you’re probably used to accessing data through Entity Framework at this point rather than using some of the AWS SDKs and data services such as DynamoDB.

It’s super easy…

Initial Skill

First off, this example uses a super basic skill where the only custom intent is to get facts about animals. Here’s the intent setup in the UI:
AnimalFactIntent_Full

You can also find the interactionModel.json here:
https://github.com/SuavePirate/Cross-Platform-Voice-NET/blob/master/src/End/AnimalFacts/AnimalFacts/InteractionModels/alexaInteractionModel.json

Let’s start by abstracting some handlers out so we aren’t writing everything in our Function class – this isn’t JavaScript after all:

WelcomeHandler.cs

public class WelcomeHandler : IResponseHandler
{
    public SkillResponse GetResponse(SkillRequest input)
    {
        return ResponseBuilder.Ask("Welcome to the animal facts voice app! You can ask me about all kinds of animals - try saying, tell me about dogs.");
    }
}

AnimalFactHandler.cs

public class AnimalFactHandler : IAsyncResponseHandler
{
    public async Task<SkillResponse> GetResponse(SkillRequest input)
    {
        // TODO: Do something with data to get the fact.
    }    
}

Then we can setup our Function:

Function.cs

public class Function
{
    // using these interfaces can help us use something like Moq to unit test this bad boy.
    private readonly IResponseHandler _welcomeHandler;
    private readonly IAsyncResponseHandler _animalFactHandler;

    public Function() 
    {
        _welcomeHandler = new WelcomeHandler();
        _animalFactHandler = new AnimalFactHandler();
    }  

    public async Task<SkillResponse> FunctionHandler(SkillRequest input, ILambdaContext context)
    {
        var requestType = input.GetRequestType();

        if (requestType == typeof(IntentRequest))
        {
            if ((input.Request as IntentRequest).Intent.Name == "AnimalFactIntent")
            { 
                return await _animalFactHandler.GetResponse(input);
            }
        }
        else if (requestType == typeof(Alexa.NET.Request.Type.LaunchRequest))
        {
            return _welcomeHandler.GetResponse(input);
        }    

        return ResponseBuilder.Ask("I'm not sure I know how to do that. Try asking me for an animal fact!");
    }
}

So we have a basic setup, but we need to actually implement something in the AnimalFactHandler. In this case, we want to do a SQL search for a fact about the animal that was asked about!

SO let’s start wiring up Entity Framework to this skill:

Add Models and Context

Let’s create a model for our AnimalFact entity to represent our table:

AnimalFact.cs

public class AnimalFact
{
    public int Id { get; set; }
    public string AnimalName { get; set; }
    public string Fact { get; set; }
}

And now let’s create a DbContext implementation with our AnimalFact:

AnimalContext

public class AnimalContext : DbContext
{
    public DbSet<AnimalFact> AnimalFacts { get; set; }
    public AnimalContext(DbContextOptions options)
        : base(options)
    {

    }

    public AnimalContext()
    {

    }
}

NOTE: If you are NOT also using this AnimalContext in a web app that handles the migrations, you’ll need to add either a web app or a console project with .NET Core to handle the migrations since it needs to be an executable project type. The assumption here is that you already have a project running these migrations so you can actually add data to it, but if you are starting here, simply create a new .NET Core web app project or Console app, reference your DbContext from a shared library between the Labmda project and the app project, then run your migrations from the app project.

From here on out, we assume you have the db created from your context and some data in it.

Updating the Skill Lambda

Now that we have a DbContext, let’s add it to our Function and AnimalFactHandler in order to search for the fact!

Let’s go to the AnimalFactHandler and setup the class to take the AnimalContext in the constructor so we can easily unit test and then use the slot value from the request to query for the animal:

AnimalFactHandler.cs

public class AnimalFactHandler : IAsyncResponseHandler
{
    private readonly AnimalContext _context;
    public AnimalFactHandler(AnimalContext context)
    {
        _context = context;
    }

    public async Task<SkillResponse> GetResponse(SkillRequest input)
    {
        // get the animal name from the slot
        var intent = (input.Request as IntentRequest).Intent;
        var animal = intent.Slots["Animal"].Value;

        // query for the fact
        var animalFact = _context.AnimalFacts
                            .Where(a => a.AnimalName.ToLower() == animal.ToLower())
                            .FirstOrDefaultAsync();

        // we found the animal!
        if (animalFact != null)
        {
            return ResponseBuilder.Tell(animalFact.Fact);
        }

        // couldn't find the animal - return a decent response
        return ResponseBuilder.Ask("I don't know about that animal. Try asking me about a different one!");
    }    
}

Now that we have the updated handler, let’s update the entry point to initialize and pass in the AnimalContext.

Function.cs

public class Function
{
    // using these interfaces can help us use something like Moq to unit test this bad boy.
    private readonly IResponseHandler _welcomeHandler;
    private readonly IResponseHandler _animalFactHandler;
    private readonly AnimalContext _context;

    public Function() 
    {
        var connectionString = Environment.GetEnvironmentVariable("DatabaseConnectionString");
        var timeoutSetting = Environment.GetEnvironmentVariable("DatabaseCommandTimeout");
        var optionsBuilder = new DbOptionsBuilder<AnimalFactContext>()
            .UseSqlServer(connectionString, providerOptions => providerOptions.CommandTimeout(int.Parse(timeoutSetting)));
        _context = new AnimalFactContext(optionsBuilder.Build());
        _welcomeHandler = new WelcomeHandler();
        _animalFactHandler = new AnimalFactHandler(_context);
    }  

    public SkillResponse FunctionHandler(SkillRequest input, ILambdaContext context)
    {
        var requestType = input.GetRequestType();

        if (requestType == typeof(IntentRequest))
        {
            if ((input.Request as IntentRequest).Intent.Name == "AnimalFactIntent")
            { 
                return _animalFactHandler.GetResponse(input);
            }
        }
        else if (requestType == typeof(Alexa.NET.Request.Type.LaunchRequest))
        {
            return _welcomeHandler.GetResponse(input);
        }    

        return ResponseBuilder.Ask("I'm not sure I know how to do that. Try asking me for an animal fact!");
    }
}

Now we can publish this and check out our results!

Results

For example, I’ll use Swagger to create an animal fact, and then ask for it!

Boom – created:
create_dog_fact.PNG

And now let’s ask for it!

dog_fact_response

Conclusion

Adding data-driven responses to your custom Alexa Skills is dead easy using techniques you may already be familiar with if you are a .NET web developer! Show me what you’ve built with .NET and Alexa in the comments!


If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile and AI developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.


voicify_logo
I’m the Director and Principal Architect over at Voicify. Learn how you can use the Voice Experience Platform to bring your brand into the world of voice on Alexa, Google Assistant, Cortana, chat bots, and more: https://voicify.com/


Alexa.Tip – Access Lambda Environment Variables in .NET

In this Alexa.Tip series, we explore some little bits of code that can make your life easier in developing Alexa Skills in many languages including C# + .NET, node.jS + TypeScript, Kotlin, etc. We look at concepts that developers might not be aware of, design patterns that and how they can be applied to voice application development, best practices, and more!

In this post, we’ll look at a simple tip to help secure your Alexa Skills when using an AWS Lambda. In a future post, we’ll look at a similar concept in .NET for developers using ASP.NET Core Web API instead of Lambdas.

So, you’ve taken the step to building proper data-driven Alexa Skills and have stepped out of the simple “todo” examples. Perhaps you need a database connection in your source code, need to change values depending on what environment you are running the skill in, or want to run your skill with options you can change without having to redeploy the codebase over and over again.

For all of these problems, your best bet is to use the Lambda Environment variables. Doing it is INCREDIBLY simple, yet I still see many developers unaware of how to use them and instead use runtime checks or don’t bother scaling their application at all to needing them.

In this example, we’ll look at how to create an instance of an Entity Framework DbContext and set it up for a testable injection based project.

Let’s look at a code snipet example of a piece of an Alexa Skill running in a .NET Lambda using a hard coded connection string:

Message.cs

// a simple table to represent some messages we can grab
public class Message
{
    public int Id { get; set; }
    public string Content { get; set; }
}

And here’s our DbContext we are going to grab data from:
MessageDbContext.cs

public class MessageDbContext : DbContext 
{
    public DbSet<Message> Messages { get; set; }

    public MessageDbContext(DbContextOptions options) : base(options) { }
}

Now check out a lambda I typically see with hard coded connection strings and settings:

BadLambda.cs

public class BadLambda
{
    // an EF DbContext with some message tables
    private readonly MessageDbContext _context;

    public BadLambda()
    {
        var optionsBuilder = new DbOptionsBuilder<MessageDbContext>()
            .UseSqlServer("my_connection_string", providerOptions => providerOptions.CommandTimeout(60));
        _context = new MessageDbContext(optionsBuilder.options);
    }

    public async Task<SkillResponse>(SkillRequest input)
    {
        var message = await _context.Messages.FirstOrDefaultAsync();
        return ResponseBuilder.Tell(message.Content);
    }
}

So breaking down the code… We have an EF DbContext with one table called “Messages” which has a column of Id and Content, and our Skill Lambda sets up the DbContext with a hard coded connection string and timeout setting, then returns the first messages as a simple response.

Let’s take this lambda and add environment variables so we can run mutliple environments for multiple dbs including a localhost db if we wanted to test locally before deploying to Lambda and so we can test updates before we make changes to our production skill!

In AWS

Head over to your lambda in AWS and scroll down to “Environment Variables”:
Labmda_env

Here you can add any key-value pairs you want. For this demo, we want to put our database connection string and our timeout setting here:

Lambda_env_filled

Now make sure you smash that save button and head back to Visual Studio to make our final updates!

Don’t forget you can now also create another lambda for a development or staging environment separate from your production lambda – be sure to use a different database connection in your environment variables, and then you can publish to both 😀

In the Code

Now we just have to use the

Environment.GetEnvironmentVariable(string key);

method to grab the values of these environment variables we set up and we’re off to the races!

Here’s what that looks like when updates:

GoodLambda.cs

public class GoodLambda
{
    // an EF DbContext with some message tables
    private readonly MessageDbContext _context;

    public GoodLambda()
    {
        var connectionString = Environment.GetEnvironmentVariable("DatabaseConnectionString");
        var timeoutSetting = Environment.GetEnvironmentVariable("DatabaseCommandTimeout");
        var optionsBuilder = new DbOptionsBuilder<MessageDbContext>()
            .UseSqlServer(connectionString, providerOptions => providerOptions.CommandTimeout(int.Parse(timeoutSetting)));
        _context = new MessageDbContext(optionsBuilder.options);
    }

    public async Task<SkillResponse>(SkillRequest input)
    {
        var message = await _context.Messages.FirstOrDefaultAsync();
        return ResponseBuilder.Tell(message.Content);
    }
}

Now publish it to your lambda and you’re done!

Recap

  • For the love of god, stop hard coding connection strings and settings in your lambda
  • Use environment variables
  • Setup multiple environments for scalability and testability
  • Abuse Environment.GetEnvironmentVariable()
  • Build more Alexa Skill 🙂

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile and AI developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.


voicify_logo
I’m the Director and Principal Architect over at Voicify. Learn how you can use the Voice Experience Platform to bring your brand into the world of voice on Alexa, Google Assistant, Cortana, chat bots, and more: https://voicify.com/