Xamarin.Meetup – Boston Meetup Today: DevOps for Mobile Apps with Dan Hermes

Join us at Microsoft’s NERD Center to learn about DevOps for Mobile Apps! Meet with some of the local Xamarin MVPs and employees while also enjoying some food.

https://www.meetup.com/bostonmobiledev/events/244933704/

How do we keep our iOS and Android builds organized, tested, and distributed to team members and users who need them, with the correct versions flowing into the app stores? This is DevOps for mobile apps.

Dan Hermes, Xamarin MVP and co-organizer of Boston Mobile C# Developers Group, will discuss the high points of his upcoming edX video course for Microsoft on how to do all of these things using Visual Studio Mobile Center (VSMC). He will talk about developing, deploying and managing mobile applications in DevOps environments. He’ll cover setup and management of VSMC and the testing and deployment of mobile apps. Mobile Center Build, Test, and Distribute are powered by Visual Studio Team System (VSTS), Xamarin Test Cloud, and HockeyApp.  Learn the VSMC workflows that tie all of these tools together.

This talk is for any and all native app developers, not just C#.  Many features of VSMC work for Objective-C and Java just as well as Xamarin.

About the Speaker

Dan Hermes is a Xamarin MVP,  Microsoft MVP, and founder of Lexicon Systems, an award-winning Xamarin consulting firm. Mr. Hermes helps developers create great mobile apps and helps businesses develop a winning mobile strategy. His firm’s Xamarin projects include B4UFLY, a drone app for the Federal Aviation Administration, and a cross-platform app for Thermo Fisher Scientific which won a W3, a Davey award, and was a finalist for a Xammy award. Mr. Hermes’ clientele includes dozens of software-building firms such as Fidelity Investments, EDS, and Computerworld Magazine. He has spoken recently at Microsoft Ignite, IBM InterConnect, Microsoft Azure Day, Xamarin DevDays, and mobile user groups nationwide . His mobile cross-platform dev blog is http://mobilecsharpcafe.com/. Connect with him on Twitter at @danhermes. Dan is a writer for MSDN Magazine, a video course instructor for Microsoft’s OpenEdX curriculum, and author of the best-selling Apress book Xamarin Mobile Application Development.

 

 

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

.NET Flux Toolkit Nuget Announcement

Last week I mentioned that I was going to be publishing some of my GitHub library projects on Nuget to make them easier to integrate into your projects – Here’s the newest library for using the Flux in your .NET applications such as Xamarin, UWP, WPF, WinForms, and even ASP.NET.

Nuget: https://www.nuget.org/packages/FluxToolkit/
GitHub: https://github.com/SuavePirate/FluxToolkit/

Here’s how to get started!

FluxToolkit

A super simple library to enable the implementation of Flux in .NET Applications such as Xamarin, UWP, WPF, and more. It contains some base level Flux components to help you get started with your implementation faster.

What is Flux?

Flux is a design pattern created by Facebook with the purpose of creating robust data-driven UI components and handles the flow of data between components and outward to services.

Components

Flux consists of 4 major components – Stores, Actions, Components, and the Dispatcher

Stores

Stores are responsible for containing and managing data for a single domain or data type. Stores listen to the dispatcher for certain events and use the data from the dispatcher to update their data, handle errors, and then pass that update down to the components that are subscribed to the store.

Actions

Actions are responsible for piping events through the dispatcher. Actions are invoked from Components or from background processes. They can also handle some small business logic such as data mapping or talking to external services.

Components

Components are the UI and UI logic layers. They are responsible for displaying views to the users and for handling user events. They invoke Actions and subsribe to Stores to handle updates to the data.

Dispatcher

A single dispatcher is responsible for the Pub/Sub mechanism of events invoked from Actions. Stores subscribe to events by name through the Dispatcher.

How does it work with MVVM and data binding?

ViewModels can be considered part of the Component layer but are separated from the actual UI/Views. This means that the ViewModels are responsible for invoking Actions, and subscribing to Stores. The Views themselves are only responsible for showing the UI and communicating to the ViewModel.

Getting Started

Install

The FluxToolkit is available on Nuget: https://www.nuget.org/packages/FluxToolkit It has no external dependencies and should work with any .NET Standard library or project including Xamarin, Xamarin.Forms, UWP, WPF, and even WinForms. It has not been used for web application development, but it is compatible with ASP.NET projects.

Install the nuget package with the nuget package manager or via the Package Manager command line:

Install-Package FluxToolkit

Create your Stores

Use the StoreBase class from the FluxToolkit to implement your unique stores for your different data types. It contains a generic Data field based on the TData type you pass into the definition. Now you don’t have to worry about communicating to the dispatcher for pub/sub – simply call the base methods for Subsribe and Unsubscribe.

Ensure that you are not using multiple instances of your Stores, but rather should be using either a Singleton or Inversion of Control with Dependency Injection to pass the implementation of your Store to the Components that require it through the constructor. Constantly creating new Stores can cause memory leaks due to the event subscriptions.

Here’s an example store implementation:

    /// <summary>
    /// Event store for holding and managing todo items
    /// </summary>
    public class TodoStore : StoreBase<ObservableCollection<Todo>>
    {
        /// <summary>
        /// Creates a new store and handles subscriptions to the dispatcher
        /// </summary>
        public TodoStore()
        {
            Subscribe<string>(TodoActionTypes.ADD_TODO);
            Subscribe(TodoActionTypes.DELETE_COMPLETED_TODOS);
            Subscribe<string>(TodoActionTypes.DELETE_TODO);
            Subscribe<Todo>(TodoActionTypes.EDIT_TODO);
            Subscribe(TodoActionTypes.TOGGLE_ALL_TODOS);
            Subscribe<string>(TodoActionTypes.TOGGLE_TODO);

            Data = new ObservableCollection<Todo>();
        }

        /// <summary>
        /// Processes an event from the dispatcher before emitting it.
        /// </summary>
        /// <typeparam name="TData"></typeparam>
        /// <param name="eventType"></param>
        /// <param name="data"></param>
        protected override void ReceiveEvent<TData>(string eventType, TData data)
        {
            try
            {
                Error = null;
                switch (eventType)
                {
                    case TodoActionTypes.ADD_TODO:
                        Data.Add(new Todo
                        {
                            Id = Guid.NewGuid().ToString(),
                            Text = data as string,
                            IsComplete = false
                        });
                        break;
                    case TodoActionTypes.DELETE_COMPLETED_TODOS:
                        var itemsToRemove = Data.Where(t => t.IsComplete);
                        foreach(var item in itemsToRemove.ToList())
                        {
                            Data.Remove(item);
                        }
                        break;
                    case TodoActionTypes.DELETE_TODO:
                        var itemToRemove = Data.FirstOrDefault(t => t.Id == data as string);
                        if (itemToRemove != null)
                            Data.Remove(itemToRemove);
                        break;
                    case TodoActionTypes.EDIT_TODO:
                        var itemToEdit = Data.FirstOrDefault(t => t.Id == (data as Todo).Id);
                        if (itemToEdit != null)
                            itemToEdit.Text = (data as Todo).Text;
                        break;
                    case TodoActionTypes.TOGGLE_ALL_TODOS:
                        var areAllComplete = !Data.Any(t => !t.IsComplete);
                        foreach(var todo in Data)
                        {
                            todo.IsComplete = !areAllComplete;
                        }
                        break;
                    case TodoActionTypes.TOGGLE_TODO:
                        var itemToToggle = Data.First(t => t.Id == (data as string));
                        if (itemToToggle != null)
                            itemToToggle.IsComplete = !itemToToggle.IsComplete;
                        break;

                }
            }
            catch (Exception ex)
            {
                // if something goes wrong, set the error before emitting
                Error = ex.Message;
            }
           
            base.ReceiveEvent(eventType, data);
        }
    }

Create your Actions

Create an Actions class for each of your main data types. These actions will call to the Dispatcher to fire events and will also need to implement IActions in order to properly handle the pub/sub mechanism.

    /// <summary>
    /// Actions to be taken against Todo items
    /// </summary>
    public class TodoActions : IActions
    {
        public void AddTodo(string text)
        {
            Dispatcher.Send<IActions, string>(this, TodoActionTypes.ADD_TODO, text);
        }

        public void DeleteCompletedTodos()
        {
            Dispatcher.Send<IActions>(this, TodoActionTypes.DELETE_COMPLETED_TODOS);
        }

        public void DeleteTodo(string id)
        {
            Dispatcher.Send<IActions, string>(this, TodoActionTypes.DELETE_TODO, id);
        }

        public void EditTodo(string id, string text)
        {
            Dispatcher.Send<IActions, Todo>(this, TodoActionTypes.EDIT_TODO, new Todo
            {
                Id = id,
                Text = text
            });
        }

        public void StartEditingTodo(string id)
        {
            Dispatcher.Send<IActions, string>(this, TodoActionTypes.START_EDITING_TODO, id);
        }

        public void StopEditingTodo()
        {
            Dispatcher.Send<IActions>(this, TodoActionTypes.STOP_EDITING_TODO);
        }

        public void ToggleAllTodos()
        {
            Dispatcher.Send<IActions>(this, TodoActionTypes.TOGGLE_ALL_TODOS);
        }

        public void ToggleTodo(string id)
        {
            Dispatcher.Send<IActions, string>(this, TodoActionTypes.TOGGLE_TODO, id);
        }
        
    }

Define your ActionTypes

For each of your data types, you’ll need to define some ActionTypes which translate to the id or name of the events your Actions are invoking through the Dispatcher.

    /// <summary>
    /// Different types of actions that can be completed within the context of Todo items
    /// </summary>
    public class TodoActionTypes
    {
        public const string ADD_TODO = "add_todo";
        public const string DELETE_COMPLETED_TODOS = "delete_completed_todos";
        public const string DELETE_TODO = "delete_todo";
        public const string EDIT_TODO = "edit_todo";
        public const string START_EDITING_TODO = "start_editing_todo";
        public const string STOP_EDITING_TODO = "stop_editing_todo";
        public const string TOGGLE_ALL_TODOS = "toggle_all_todos";
        public const string TOGGLE_TODO = "toggle_todo";
        public const string UPDATE_DRAFT = "update_draft";
    }

Wire up your Components (with MVVM or without)

Have your components subscribe to the Stores that are appropriate for the data need, and invoke the Actions they need. This is a great place to place inject your Stores and Actions into the constructor of your Componentswhether it is through a ViewModel or an ActivityViewController, or Xamarin.Forms.Page.

    public class TodoListPageViewModel : BasePageViewModel
    {
        private readonly TodoStore _todoStore;
        private readonly TodoActions _todoActions;
        private ObservableCollection<Todo> _items;
        private ICommand _createCommand;
        private ICommand _toggleCommand;
        private ICommand _toggleAllCommand;
        private ICommand _deleteCommand;
        private ICommand _deleteCompletedCommand;
        private ICommand _editCommand;
        private ICommand _populateCommand;

        public ICommand CreateCommand
        {
            get
            {
                return _createCommand ??
                    (_createCommand = new RelayCommand(async () =>
                    {
                        var result = await UserDialogs.Instance.PromptAsync(string.Empty, "New", "Done", "Cancel", "Todo...");
                        if (result.Ok)
                        {
                            _todoActions.AddTodo(result.Text);
                        }
                    }));
            }
        }

        public ICommand EditCommand
        {
            get
            {
                return _editCommand ??
                    (_editCommand = new RelayCommand<Todo>(async (t) =>
                    {
                        var result = await UserDialogs.Instance.PromptAsync(new PromptConfig()
                            .SetText(t.Text)
                            .SetTitle("Edit")
                            .SetOkText("Done")
                            .SetCancelText("Cancel")
                            .SetPlaceholder("Todo..."));
                        if (result.Ok)
                        {
                            _todoActions.EditTodo(t.Id, result.Text);
                        }
                    }));
            }
        }

        public ICommand ToggleCommand
        {
            get
            {
                return _toggleCommand ??
                    (_toggleCommand = new RelayCommand<Todo>((t) =>
                    {
                        _todoActions.ToggleTodo(t.Id);
                    }));
            }
        }

        public ICommand ToggleAllCommand
        {
            get
            {
                return _toggleAllCommand ??
                    (_toggleAllCommand = new RelayCommand(() =>
                    {
                        _todoActions.ToggleAllTodos();
                    }));
            }
        }

        public ICommand DeleteCommand
        {
            get
            {
                return _deleteCommand ??
                    (_deleteCommand = new RelayCommand<Todo>((t) =>
                    {
                        _todoActions.DeleteTodo(t.Id);
                    }));
            }
        }

        public ICommand DeleteCompletedCommand
        {
            get
            {
                return _deleteCompletedCommand ??
                    (_deleteCompletedCommand = new RelayCommand(() =>
                    {
                        _todoActions.DeleteCompletedTodos();
                    }));
            }
        }

        public ICommand PopulateCommand
        {
            get
            {
                return _populateCommand ??
                    (_populateCommand = new RelayCommand(() =>
                    {
                        for(var i = 1; i < 20; i++)
                        {
                            _todoActions.AddTodo($"New Item {i}");
                            Task.Delay(200);
                        }
                    }));
            }
        }

        public ObservableCollection<Todo> Items
        {
            get
            {
                return _todoStore.Data;
            }
        }

        public TodoListPageViewModel(TodoStore todoStore, TodoActions todoActions)
        {
            _todoStore = todoStore;
            _todoActions = todoActions;
            _todoStore.OnEmitted += TodoStore_OnEmitted;
        }

        /// <summary>
        /// Processes events from the todo store and updates any UI that isn't handled automatically
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void TodoStore_OnEmitted(object sender, StoreEventArgs e)
        {
            switch (e.EventType)
            {
                case TodoActionTypes.ADD_TODO:
                    if(_todoStore.Error == null)
                    {
                        UserDialogs.Instance.Toast("Item added");
                    }
                    break;
                case TodoActionTypes.DELETE_COMPLETED_TODOS:
                    if (_todoStore.Error == null)
                    {
                        UserDialogs.Instance.Toast("Items deleted");
                    }
                    break;
                case TodoActionTypes.DELETE_TODO:
                    if (_todoStore.Error == null)
                    {
                        UserDialogs.Instance.Toast("Item deleted");
                    }
                    break;
                case TodoActionTypes.TOGGLE_ALL_TODOS:
                    if (_todoStore.Error == null)
                    {
                        UserDialogs.Instance.Toast("Items toggled");
                    }
                    break;
                case TodoActionTypes.TOGGLE_TODO:
                    if (_todoStore.Error == null)
                    {
                        UserDialogs.Instance.Toast("Item toggled");
                    }
                    break;
            }
            if(_todoStore.Error != null)
            {
                UserDialogs.Instance.ShowError(_todoStore.Error);
            }
        }
    }

Contributing

Want to add additional examples or more tooling to help people develop their apps with Flux? Fork this repository and create a pull request!

Additional Resources

 

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Reality, Virtually, Hackathon This Weekend!

Reality, Virtually, Hackathon is this weekend October 6th – 9th at MIT’s Media Labs.

I’m excited to announce that I’ll be joining the Microsoft team to mentor participants at this year’s installment of the hackathon. If you’re working with Microsoft technologies such as using C# with Unity, Hololens, Acer VR, Xamarin with ARKit and ARCore, Xenko,  or using any of the Azure Cloud Services, then I’m here to help. I’m looking forward to working with some incredible teams with some of the latest technology to build some awe inspiring applications.

Check out some of the other mentors there as well!
http://www.realityvirtuallyhack.com/mentors/ 

Here’s the schedule:

Event Schedule


Friday


Saturday


Sunday


Monday

 


I’ll be there from Friday evening until Sunday evening, so keep an eye out for me if you’re around!

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Nuget – Coming to a Nuget Package Near You

Your voices have been heard – I’m bringing all my helpful controls and libraries to nuget!

Over the next two weeks, I will be going through each one of my projects and getting them nuget-ready. I’ll then be putting them up on nuget and announcing their individual releases here on my blog.

Here’s what you can expect to see on nuget:

So stay tuned, and if you want to contribute to any of these tools, please fork those repositories!

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Meetup – “Fluxing” Up Your Apps With Alex Dunn

Join us at the Microsoft NERD Center in Cambridge for the September Boston Mobile C# User-group on September 20th!

I’ll personally be speaking about implementing the Flux design pattern in your Xamarin and other .NET applications.

https://www.meetup.com/bostonmobiledev/events/242742363/

Meeting Details

Flux is the design pattern created by Facebook in your .NET apps to build robust and manageable data-driven interfaces. Learn what Flux is, how it differs from other patterns such as MVVM and MVC, and follow along and build your first app with Flux.

About the Presenter

Alex Dunn is a software consultant and architect with a passion for mobile application development and edge technology such as machine learning, AI, IoT, and modern web. He’s a Xamarin MVP and a Microsoft MVP for .NET, and can be found giving Guest Lectures at Xamarin University or organizing Boston’s Mobile C# User-group. Follow Alex and learn how to build beautiful and robust applications.

Twitter: @Suave_Pirate
GitHub: @SuavePirate
Blog: https://alexdunn.org
Flux Resources:

Source code for demo: https://github.com/suavepirate/xamarin.flux
Xamarin University Lecture:
https://university.xamarin.com/guestlectures/architecting-your-app-with-xamarin-facebook-flux
Gone Mobile Podcast:
http://gonemobile.io/blog/e0044.fluxing.up.your.xamarin.apps.with.alex.dunn/

 

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Meetup – Boston Meetup Today: Xamarin on Azure and Cognitive Services

Join us at Microsoft’s NERD Center to learn about using Azure Cognitive Services in your Xamarin apps! Meet with some of the local Xamarin MVPs and employees while also enjoying some food.

https://www.meetup.com/bostonmobiledev/events/242566795/

Xamarin on Azure and Cognitive Services

Mobile development and cloud technologies are very popular right now. If you are a C# developer and already created your first application with Xamarin, you might be interested in learning some more details about Xamarin and Xamarin Forms. You might also want to use all benefits of Azure in your application or jump right into advanced topics and select one (or a couple) Cognitive Services for your application to integrate with. You will be able to get a flavor of all those tools from this talk. Also final demo will add some visual understanding of the topic.

About the speaker

Veronika Kolesnikova is a web developer at UMass Medical School.

Passionate about backend web development, mainly with Microsoft technologies like C#, .NET, SQL, Azure. Loves to learn new development tools and languages and share the knowledge with the community. Recently started working with Xamarin and cannot wait to provide her insights.
Last year Veronika graduated with MS degree in Information Technology.
In her free time, she likes dancing, traveling and practicing aerial yoga.

 

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.University – Guest Lecture Available for Free!

Xamarin University has now published my second guest lecture on WebRTC and building cross-platform voice/video conferencing apps for free! Check it out here:

 

 

And as always, find the source code on my GitHub here: https://github.com/SuavePirate/Xamarin.WebRTC

 
If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Android.Kotlin – Create a TabLayout

We’ll once again take a break from the cross-platform Xamarin content and look at an example of using the latest Kotlin language from Jetbrains with our native Android applications. In this post, we’ll look at an implementation of a TabLayout with a ViewPager using Kotlin!

I also apologize for the lack of useful highlighting of the Kotlin code in this post. Since it is a new language, WordPress doesn’t support it as well for code snippets…

The source code for this example can be found on my GitHub here:
https://github.com/SuavePirate/KotlinPuppies.

The Layout

This example will use a RecyclerView for the content of each Fragment. So we need to define layouts for our Puppy, Fragment, and our entire Activity that houses the TabLayout and Fragments.

Our puppy item will contain a CardView that has an image and text to contain a picture of the puppy and the pup’s name!

puppy_item.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:app="http://schemas.android.com/apk/res-auto"
    android:orientation="vertical" android:layout_width="match_parent"
    android:layout_height="wrap_content">

    <android.support.v7.widget.CardView
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:layout_margin="8dp"
        app:cardElevation="8dp">

        <LinearLayout
            android:layout_width="match_parent"
            android:layout_height="match_parent"
            android:layout_margin="16dp"
            android:orientation="vertical">

            <ImageView
                android:id="@+id/puppyImageView"
                android:layout_width="match_parent"
                android:layout_height="wrap_content"
                app:srcCompat="@mipmap/ic_launcher" />

            <TextView
                android:id="@+id/puppyTextView"
                android:layout_width="match_parent"
                android:layout_height="wrap_content"
                android:textAlignment="center"
                android:text="Puppy Name" />
        </LinearLayout>

    </android.support.v7.widget.CardView>
</LinearLayout>

Now let’s look at our Fragment layout that will contain a RecylerView that houses each collection of puppies.

puppy_fragment.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:paddingBottom="@dimen/activity_vertical_margin"
    android:paddingLeft="@dimen/activity_horizontal_margin"
    android:paddingRight="@dimen/activity_horizontal_margin"
    android:paddingTop="@dimen/activity_vertical_margin"
    tools:context="com.suavepirate.kotlinpuppies.MainActivity$PlaceholderFragment">

    <android.support.v7.widget.RecyclerView
        android:id="@+id/puppyRecyclerView"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:layout_centerHorizontal="true"
        android:layout_centerVertical="true"
        tools:listitem="@layout/puppy_item" />
</RelativeLayout>

Now let’s wrap it all together with our main layout:

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:app="http://schemas.android.com/apk/res-auto"
    xmlns:tools="http://schemas.android.com/tools"
    android:id="@+id/main_content"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    android:fitsSystemWindows="true"
    tools:context="com.suavepirate.kotlinpuppies.MainActivity">

    <android.support.design.widget.AppBarLayout
        android:id="@+id/appbar"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:paddingTop="@dimen/appbar_padding_top"
        android:theme="@style/AppTheme.AppBarOverlay">

        <android.support.v7.widget.Toolbar
            android:id="@+id/toolbar"
            android:layout_width="match_parent"
            android:layout_height="?attr/actionBarSize"
            android:background="?attr/colorPrimary"
            app:layout_scrollFlags="scroll|enterAlways"
            app:popupTheme="@style/AppTheme.PopupOverlay">

        </android.support.v7.widget.Toolbar>

        <android.support.design.widget.TabLayout
            android:id="@+id/tabs"
            android:layout_width="match_parent"
            android:layout_height="wrap_content" />

    </android.support.design.widget.AppBarLayout>

    <android.support.v4.view.ViewPager
        android:id="@+id/container"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        app:layout_behavior="@string/appbar_scrolling_view_behavior" />


</android.support.design.widget.CoordinatorLayout>

Now that we have our layouts, let’s create our Fragment, Adapters, and then wrap it all together in our MainActivity.

Building the Recycler Adapter

Let’s first define our RecyclerView adapter and ViewHolder to contain our collections of puppies.

PuppyHolder.kt

class PuppyHolder(itemView: View) : RecyclerView.ViewHolder(itemView) {
    private val puppyImage: ImageView = itemView.findViewById<ImageView>(R.id.puppyImageView)
    private val puppyName: TextView = itemView.findViewById(R.id.puppyTextView)

    fun updateWithPuppy(puppy: Puppy) {
        puppyImage.setImageDrawable(puppy.imageFile)
        puppyName.text = puppy.name
    }
}

This code defines a class that inherits the RecyclerView.ViewHolder with a default constructor that requires a View parameter that is also passed into the base class constructor. It then defines the two subviews we need to populate – the TextView and ImageView of a single puppy. Lastly, we create our updateWithPuppy function that will be called by our Adapter to instantiate the content with the given puppy’s information.

Now that we have our ViewHolder, we can create our Adapter:

PuppyAdapter.kt

class PuppyAdapter(private val puppies: ArrayList<Puppy>) : RecyclerView.Adapter<PuppyHolder>() {

    override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): PuppyHolder {
        val puppyItem = LayoutInflater.from(parent.context).inflate(R.layout.puppy_item, parent, false) as LinearLayout
        return PuppyHolder(puppyItem)
    }

    override fun onBindViewHolder(holder: PuppyHolder, position: Int) {
        holder.updateWithPuppy(puppies[position])
    }

    override fun getItemCount(): Int {
        return puppies.toArray().count();
    }

}

This adapter uses another cool feature of Kotlin – Defining a private field in the constructor while also auto-setting it. The class declaration and default constructor of PuppyAdapter(private val puppies: ArrayList) is the equivalent to something like this in Java:

public class PuppyAdapter{
    private final ArrayList<Puppy> puppies;
    public PuppyAdapter(ArrayList<Puppy> puppies){
        this.puppies = puppies;
    }
}

That’s pretty sweet! The rest of the wire up for the Adapter is pretty standard. It sets the ViewHolder using the PuppyHolder we created above and updates it with the puppy by finding it with the given index.

The Puppy Fragment

Now we can create our Fragment that will contain and wire up the RecyclerView for each puppy collection.

PuppyListFragment.kt


class PuppyListFragment(passedContext: Context) : Fragment(){

    val puppyFactory : PuppyFactory = PuppyFactory(passedContext)
    val ARG_LIST_TYPE = "LIST_TYPE"
    val passThroughContext : Context = passedContext


    override fun onCreateView(inflater: LayoutInflater?, container: ViewGroup?,
                              savedInstanceState: Bundle?): View? {
        val rootView = inflater!!.inflate(R.layout.fragment_main, container, false)
        val recyclerView = rootView.findViewById<RecyclerView>(R.id.puppyRecyclerView) as RecyclerView
        val listType = this.arguments.getSerializable(ARG_LIST_TYPE) as PuppyListType
        var puppies = ArrayList<Puppy>()
        when (listType) {
            PuppyListType.All -> puppies = puppyFactory.puppies
            PuppyListType.Active -> puppies = puppyFactory.activePuppies
            PuppyListType.LeashTrained -> puppies = puppyFactory.leashTrainedPuppies
            PuppyListType.Big -> puppies = puppyFactory.bigPuppies
            PuppyListType.Small -> puppies = puppyFactory.smallPuppies
        }

        recyclerView.adapter = PuppyAdapter(puppies)
        recyclerView.layoutManager = LinearLayoutManager(passThroughContext)
        return rootView
    }

    companion object {
        val ARG_LIST_TYPE = "LIST_TYPE"

        fun newInstance(listType: PuppyListType, context: Context): PuppyListFragment {
            val fragment = PuppyListFragment(context)
            val args = Bundle()
            args.putSerializable(ARG_LIST_TYPE, listType)
            fragment.arguments = args
            return fragment
        }
    }


}

In the onCreateView override, we get our puppies by type from our factory class and then instantiate our PuppyAdapter and LinearLayoutManager that get applied to the RecyclerView that we grab from our layout created earlier. Now we can pass in the PuppyListType that the fragment is responsible for displaying which will then set up our RecyclerView to render those particular puppies.

We also set up what is the equivalent of a static function that can instantiate a new instance of a PuppyListFragment by using a nested companion object.

Adding Page Adapter

Now that we have our Fragment and it’s child RecyclerView for puppies all set up, we can now create an adapter that is responsible for handling the different pages within the TabLayout that we are ultimately setting up.

PageAdapter.kt

class PageAdapter(fm: FragmentManager, private val context: Context) : FragmentPagerAdapter(fm) {

    override fun getItem(position: Int): Fragment {
        when (position) {
            0 -> return PuppyListFragment.newInstance(PuppyListType.All, context)
            1 -> return PuppyListFragment.newInstance(PuppyListType.Big, context)
            2 -> return PuppyListFragment.newInstance(PuppyListType.Small, context)
            3 -> return PuppyListFragment.newInstance(PuppyListType.LeashTrained, context)
            4 -> return PuppyListFragment.newInstance(PuppyListType.Active, context)
        }
        return PuppyListFragment.newInstance(PuppyListType.All, context)
    }

    override fun getCount(): Int {
        // Show 5 total pages.
        return 5
    }

    override fun getPageTitle(position: Int): CharSequence? {
        // return null to show no title.
        return null
        
    }

}

This is a pretty standard implementation of a PageAdapter. We override the getItem function and return the appropriate instantiated PuppyListFragment by passing in the PuppyListType we want to use by the grouping.

Set up the Activity

The last bit now is the set up our Activity that will house our TabLayout and ViewPager that will contain multiple instances of the PuppyListFragment to show different collections of puppies by category.

MainActivity.kt



class MainActivity : AppCompatActivity() {
    private var mSectionsPagerAdapter: PageAdapter? = null

    /**
     * The [ViewPager] that will host the section contents.
     */
    private var mViewPager: ViewPager? = null

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_main)

        val toolbar = findViewById<View>(R.id.toolbar) as Toolbar
        setSupportActionBar(toolbar)

        // Create the adapter that will return a fragment for each of the three
        // primary sections of the activity.
        mSectionsPagerAdapter = PageAdapter(supportFragmentManager, this)

        // Set up the ViewPager with the sections adapter.
        mViewPager = findViewById<ViewPager?>(R.id.container)
        mViewPager!!.adapter = mSectionsPagerAdapter

        val tabLayout = findViewById<View>(R.id.tabs) as TabLayout
        tabLayout.setupWithViewPager(mViewPager)

        // set icons
        tabLayout.getTabAt(0)!!.setIcon(R.drawable.ic_home_white_24dp)
        tabLayout.getTabAt(1)!!.setIcon(R.drawable.ic_dog_white_24dp)
        tabLayout.getTabAt(2)!!.setIcon(R.drawable.ic_small_dog_white_24dp)
        tabLayout.getTabAt(3)!!.setIcon(R.drawable.ic_trained_white_24dp)
        tabLayout.getTabAt(4)!!.setIcon(R.drawable.ic_active_white_24dp)

    }
}

Our MainActivity holds a private field for the ViewPager reference, and in the override of onCreate, we set up our view components by finding them in our associated layout file, then wire up the PageAdapter with our TabLayout. Then we set our icons for each given tab after calling the setupWithViewPager on our TabLayout.

View the Results

We can run our application and view our expected results of our tabs and different list of puppy cards!

Screen Shot 2017-07-05 at 11.14.13 AM

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Tip – PCL Profile Problems

New to Xamarin now that Microsoft is pushing it harder with Visual Studio 2017 and Visual Studio for Mac? Can’t create a new PCL and reference it in your Out of the Box Xamarin.Forms project? This post is for you, and I assure you – you are not alone.

 

The Problem

The core of the problem is this shift within the Microsoft Stack from many different versions of the .NET framework and tools into a “standard” – .NET Standard. However, certain parts of Xamarin aren’t quite there. These are things that worked in Visual Studio 2015, but are now new problems for VS 2017 and VS for Mac, especially if you’re working on a team that uses a mix of these.

There are multiple types of Profiles available for a Portable Class Library. Here’s a quick matrix of the different Profiles and where they compare to .NET Standard versions and supported profiles:

PCL Profile .NET Standard PCL Platforms
Profile7 1.1 .NET Framework 4.5, Windows 8
Profile31 1.0 Windows 8.1, Windows Phone Silverlight 8.1
Profile32 1.2 Windows 8.1, Windows Phone 8.1
Profile44 1.2 .NET Framework 4.5.1, Windows 8.1
Profile49 1.0 .NET Framework 4.5, Windows Phone Silverlight 8
Profile78 1.0 .NET Framework 4.5, Windows 8, Windows Phone Silverlight 8
Profile84 1.0 Windows Phone 8.1, Windows Phone Silverlight 8.1
Profile111 1.1 .NET Framework 4.5, Windows 8, Windows Phone 8.1
Profile151 1.2 .NET Framework 4.5.1, Windows 8.1, Windows Phone 8.1
Profile157 1.0 Windows 8.1, Windows Phone 8.1, Windows Phone Silverlight 8.1
Profile259 1.0 .NET Framework 4.5, Windows 8, Windows Phone 8.1, Windows Phone Silverlight 8

Now we can look at the different .NET Standard versions and their supported platforms:

 

.NET Standard 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0
.NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
.NET Framework (with tooling 1.0) 4.5 4.5 4.5.1 4.6 4.6.1 4.6.2
.NET Framework (with tooling 2.0 preview) 4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1
Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 vNext
Xamarin.iOS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 vNext
Xamarin.Android 7.0 7.0 7.0 7.0 7.0 7.0 7.0 vNext
Universal Windows Platform 10.0 10.0 10.0 10.0 10.0 vNext vNext vNext
Windows 8.0 8.0 8.1
Windows Phone 8.1 8.1 8.1
Windows Phone Silverlight 8.0

 

Xamarin.Forms is created to support everything from Windows Silverlight 8.0 and up. This means that Xamarin.Forms projects are created using a Profile 259 PCL. This is fine, however, Profile 259 is on it’s way out the door, and therefore can’t be created in Visual Studio 2017! When you create a new PCL in VS 2017, it is created with the latest version of .NET Standard that supports .NET Core, UWP, and Xamarin (as of now this is default to Profile7. However, this is incompatible with Profile 259 and therefore cannot be referenced by your newly created Xamarin.Forms project. There’s no way in the IDE or properties to get it to 259, so if you do still want to support Windows Phone and Windows 8 with your Xamarin Projects in Visual Studio 2017, read below. If you don’t, update your Xamarin.Forms project to remove support for Windows 8 and Windows phone and your profiles will be matching again.

Here’s what the default Xamarin.Forms project targets are:
Screen Shot 2017-07-03 at 11.42.45 AM

And here is what a newly created PCL project targets are with everything selected:

Screen Shot 2017-07-03 at 11.42.58 AM

 

The Solution

We need to get our newly created PCLs to Profile 259 in order to reference them in our Xamarin.Forms project. We can’t do this in the IDE, so we need to dive into the .csproj file itself and make some changes:

NewPCL.csproj

<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <Import ... />
  <PropertyGroup>
    <MinimumVisualStudioVersion>10.0</MinimumVisualStudioVersion>
    <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
    <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
    <ProjectGuid>{4a6a9117-1715-47ea-a6c7-6b0fd5b31bdb}</ProjectGuid>
    <OutputType>Library</OutputType>
    <RootNamespace>NewPCL</RootNamespace>
    <AssemblyName>NewPCL</AssemblyName>
    <DefaultLanguage>en-US</DefaultLanguage>
    <FileAlignment>512</FileAlignment>
    <ProjectTypeGuids>{786C830F-07A1-408B-BD7F-6EE04809D6DB};{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}</ProjectTypeGuids>

    <!-- THIS IS WHAT NEEDS TO CHANGE -->
    <TargetFrameworkProfile>Profile7</TargetFrameworkProfile>


    <TargetFrameworkVersion>v4.5</TargetFrameworkVersion>
  </PropertyGroup>
...
</Project>

Take that line of Profile7 and update it to Profile259 so that it looks like this all together:

<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <Import ... />
  <PropertyGroup>
    <MinimumVisualStudioVersion>10.0</MinimumVisualStudioVersion>
    <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
    <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
    <ProjectGuid>{4a6a9117-1715-47ea-a6c7-6b0fd5b31bdb}</ProjectGuid>
    <OutputType>Library</OutputType>
    <RootNamespace>NewPCL</RootNamespace>
    <AssemblyName>NewPCL</AssemblyName>
    <DefaultLanguage>en-US</DefaultLanguage>
    <FileAlignment>512</FileAlignment>
    <ProjectTypeGuids>{786C830F-07A1-408B-BD7F-6EE04809D6DB};{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}</ProjectTypeGuids>

    <!-- THIS IS WHAT HAS CHANGED -->
    <TargetFrameworkProfile>Profile259</TargetFrameworkProfile>


    <TargetFrameworkVersion>v4.5</TargetFrameworkVersion>
  </PropertyGroup>
...
</Project>

 
Now you’ll be able to add this project as a reference in your Xamarin.Forms PCL project and continue on.

I know this is pretty annoying to do on large projects that contain many different project files. Take a look at my Onion Architecture project as an example…

This is something that is happening because of this weird in-between state we are at with .NET tooling and the move to .NET Standard. Going forward, Xamarin.Forms will be dropping support for Windows Phone Silverlight which will no longer require Profile259 in order to build our applications in Xamarin.Forms. However, for now, this is the fix for new projects!

Still Broken?

Still having issues with your project structures? Leave a comment and I’ll try to help resolve it.

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.

Xamarin.Tip – Mvvm Light and Dependency Injection

Inversion of Control and Dependency Injection are some design principles that help make our applications more flexible and scalable. They both help us separate our implementations and make it easy to substitute drastic changes to our implemented data or business logic whether it be for writing unit tests or product improvement.

Xamarin is a platform where IoC and DI fit extremely well. I’ve talked about this concept a few other times in both my blogs and videos about the Onion Architecture in Xamarin as well as how to call Platform Specific code from a Portable Class Library. You can find those posts and videos here:

  1. Onionizing Xamarin Part 6
  2. [VIDEO] Xamarin.Tips: Calling Platform-Specific Code from a PCL (Dependency Injection)

In this post, I want to talk about using DI with Mvvm Light at a VERY basic level.

First, let’s define an interface for a service we might use:

IUserService.cs

public interface IUserService
{
    Task<User> GetCurrentUserAsync();
}

Now let’s create two different implementations. One that will be the service used in the application and the other that will be used for testing.

UserService.cs

public class UserService : IUserService
{
    // makes a call to a web api to get a user
    public async Task<User> GetCurrentUserAsync()
    {
        using (var client = new HttpClient())
        {
            var response = await client.GetAsync("https://mywebapi.mydomain/api/currentuser");
            var content = await response.Content.ReadAsStringAsync();
            return JsonConvert.DeserializeObject<User>(content);
        }
    }
}

TestUserServices.cs

public class TestUserService : IUserService
{
    public Task<User> GetCurrentUserAsync()
    {
        return Task.FromResult(new User { Name = "Test User" });
    }
}

Now we need a ViewModel that will use this service. We define a private readonly IUserService and then inject the implementation that we want in the constructor of the ViewModel.

CurrentUserViewModel.cs

public class CurrentUserViewModel : ViewModelBase
{
    // use the interface as the service and inject the implementation in the constructur
    private readonly IUserService _userService;
    private User _user;

    public User User
    {
        get
        {
            return _user;
        }
        set
        {
            Set(ref _user, value);
        }
    }

    public CurrentUserViewModel(IUserService userService)
    {
        _userService = userService;
    }

    public async Task UpdateUserAsync()
    {
        User = await _userService.GetCurrentUserAsync();
    }
}

Now let’s define an IoCConfig that handles registering dependencies and implementations.

IoCConfig.cs

public class IoCConfig
{
    public IoCConfig()
    {
        // use SimpleIoc from MvvmLight as our locator provider
        ServiceLocator.SetLocatorProvider(() => SimpleIoc.Default);
    }

    // register the real implementation
    public void RegisterServices()
    {
        SimpleIoc.Default.Register<IUserService, UserService>();
    }

    // register the test implementation
    public void RegisterTestServices()
    {
        SimpleIoc.Default.Register<IUserService, TestUserService>();
    }

    // register the view model
    public void RegisterViewModels()
    {
        SimpleIoc.Default.Register<CurrentUserViewModel>();
    }
}

Now that we can register our Services as well as our ViewModels, the dependency resolver from SimpleIoc can retrieve an instance of CurrentUserViewModel with whichever version of IUserService is registered depending on whether we call RegisterServices or RegisterTestServices.

Now we can retrieve our instance of the CurrentUserViewModel by calling

var currentUserViewModel = ServiceLocator.Current.GetInstance<CurrentUserViewModel>();

MvvmLight recommends using a ViewModelLocator to get the instance of your ViewModels:

ViewModelLocator.cs

public class ViewModelLocator
{
    private readonly IoCConfig _iocConfig;
    public CurrentUserViewModel CurrentUser
    {
        get
        {
            return ServiceLocator.Current.GetInstance<CurrentUserViewModel>();
        }
    }

    public ViewModelLocator()
    {
        _iocConfig = new IoCConfig();
        _iocConfig.RegisterServices();
        //_iocConfig.RegisterTestServices();
        _iocConfig.RegisterViewModels();
    }

}

It’s recommended to either create your ViewModelLocator at the app start up, or if you’re using Xamarin.Forms, register it as a Resource in your App.xaml

<Application ...     xmlns:locator="clr-namespace:YOUR_LOCATOR_LOCATION">
    <Application.Resources>
        <ResourceDictionary>
            <locator:ViewModelLocator x:Key="Locator"/>
        </ResourceDictionary>
    </Application.Resources>
</Application>

Now in your XAML pages, you can automatically wire up your view model.

MainPage.xaml

<ContentPage ...     BindingContext="{Binding Source={StaticResource Locator}, Path=CurrentUser}"     Title="{Binding User.Name}">
...
</ContentPage>

In order to change to your testing data, you can just switch which call to your IoCConfig is made for registering your dependency without having to make any changes to any of your other layers or UI!

If you like what you see, don’t forget to follow me on twitter @Suave_Pirate, check out my GitHub, and subscribe to my blog to learn more mobile developer tips and tricks!

Interested in sponsoring developer content? Message @Suave_Pirate on twitter for details.